
LLNL-PRES-689578
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Performance Portability with OpenMP:
Experiences with 4.5, Looking Toward 5.0

Tom Scogland

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
2

§  Significantly improved support for devices (accelerators,
etc.) OpenMP now provides mechanisms for unstructured
data mapping, asynchronous execution and also runtime
routines for device memory management. These routines
allow for explicit allocation, copying and freeing of memory
between devices.

§  Support for doacross loops. A natural mechanism to
parallelize loops with well-structured dependences is
provided.

§  New taskloop construct. Support to divide loops into tasks,
avoiding the requirement that all threads execute the loop.

§  Reductions for C/C++ arrays. This often requested feature
is now available by building on support for array sections.

OpenMP 4.0/4.5 Feature Overview

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
3

§  Task and lock hint mechanisms. Hint mechanisms
can provide guidance on the relative priority of tasks
and on preferred synchronization implementations.

§  Thread affinity support. It is now possible to use
runtime functions to determine the effect of thread
affinity clauses.

§  Improved support for Fortran 2003. Users can
now parallelize many Fortran 2003 programs.

§  SIMD extensions. These extensions include the
ability to specify exact SIMD width and additional
data-sharing attributes.

OpenMP 4.0/4.5 Feature Overview
Cont.

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
4

Before performance portability, we
need expressibility, and functional

portability

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
5

Biggest “surprises” for application
developers in 4.X

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
6

int add(int l, int r) {
 return l + r;
}

void do_stuff(int a) {
 #pragma omp target
 add(a, a);
}

Simple Example #1

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
7

§  All functions called in target regions must be
marked declare target!

§  Classic routines are not available on the device:
•  assert
•  exit
•  MPI_*
•  etc.

§  All user code must be marked, libraries must be
updated

In 4.0-4.5:
All Code Offloaded Must be Marked

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
8

§  Observation: Many functions that one calls in
device code may be available in the same
translation unit, anything with:
•  static
•  constexpr
•  template

§  Extension: Explicitly allow such functions to not
be marked, let the compiler do the work

Future: Automatic Propagation of
declare target!

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
10

class Vclass {
 static int bar = 0;
 virtual int foo() { return 1; }

};

void do_stuff() {

 Vclass a;
 #pragma omp target map(a)
 a.foo();

}

Simple Example #2

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
11

§  Virtual methods on objects instantiated on the
host likely will not work in device code

§  STL classes are not marked declare target
•  They’re not available now and may not be later

§  Dynamic allocation may be unavailable, or
severely limited

In 4.0-4.5:
Some C++ Features are not Enabled

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
12

§  Mapping of:
•  Member variables (especially private)
•  “this” inside a method
•  Classes with non-trivial constructors

§  Objects of classes with static or virtual members
cannot be mapped
•  The static members themselves can…

C++ and Fortran Class Support is
Under-Specified

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
13

Simple Example #3
struct a { int *a, intptr b} a1 = { (int[50]){0}, 5};
#pragma omp target
a1.b = a1.a
printf(“%p\n”, a1.b);

Result: NULL… ?

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
14

§  There are no built-in facilities for deep-copy (yet)

In 4.0-4.5: Mapping Data can be
Counter-Intuitive and Tedious

struct a { int *a, int b} a1 = { (int[50]){0}, 5};
#pragma omp parallel for …

struct a { int *a, int b} a1 = { (int[50]){0}, 5};
#pragma omp target teams distribute parallel for
map(a1, a1.a[50]) …

Becomes:

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
15

§  Deep copy will be coming

§  Annotations, or user-defined mechanisms, will
allow easier management of complex data

§  Mapping, by bitwise copy, of objects with these
are likely to be supported as well:
•  static members
•  virtual members
•  parameters

Future:
Mapping and Data Description

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
16

What does this mean for porting
applications?

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
17

§  Many codes will need significant refactoring to
take advantage of GPUs and others with
OpenMP 4.5

§  Upside: Most of these optimizations will also
make the CPU versions more efficient

Applications Will Need new
Programming Patterns

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
18

§  Functions, classes and structures used in target
regions must be written to OpenMP or the
underlying model to be available
•  Exception: Template or header-based libraries in C++

§  Major libraries will need reworks to play nice:
•  Hypre
•  ScaLAPACK
•  HDF
•  etc.

Third-Party Library Use Will be Tricky

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
19

Once a code is ported, is it
performance portable?

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
20

§  Using hints to optimize a given platform may
hurt performance on another platform

§  At present there is no facility for targeting
optimizations to a specific platform

§  Future OpenMP:
•  Target hints by platform/device
•  Increase flexibility of some constructs

Performance Portability is a Concern

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
21

§  CPUs prefer:
•  Using simd where possible
•  Using static but un-chunked schedules

§  GPUs prefer:
•  Avoiding simd construct
•  Using schedule(static, 1)!

Implementations Make Different
Assumptions

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
22

Gaps for performance portability
with OpenMP 4.X

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
23

§  Deep copy
§  Support for mapping of polymorphic objects
§  Data transformation (serialization/

deserialization-like) interface
§  Mechanisms to support out-of-core streaming

and pipelining of same
§  First-class template/lambda support

Major Follow-ups: Part 1

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
24

§  Portable interfaces to access and manipulate:
•  Dependencies, including native mechanisms for same
•  Target device function pointers
•  Closure-like constructs for outlined functions

§  Reduce the dependence on declare target:
Support inline/template/constexpr

§  Top-level asynchronous tasking
§  Event-loop programming model support

Major Follow-ups: Part 2

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
25

§  Multi-level memory management (HBM/GDDR/
etc.)

§  Support for “flexible” parallelism, or perhaps less
restrictive collapse?

§  Hints for declare target to express parallelism in
functions outside the translation unit

Major Follow-ups: Part 3

